Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 35(6): 911-921, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35585430

RESUMO

OBJECTIVE: We propose a deep learning-based fully automatic right ventricle (RV) segmentation technique that targets radially reconstructed long-axis (RLA) images of the center of the RV region in routine short axis (SA) cardiovascular magnetic resonance (CMR) images. Accordingly, the purpose of this study is to compare the accuracy of deep learning-based fully automatic segmentation of RLA images with the accuracy of conventional deep learning-based segmentation in SA orientation in terms of the measurements of RV strain parameters. MATERIALS AND METHODS: We compared the accuracies of the above-mentioned methods in RV segmentations and in measuring RV strain parameters by Dice similarity coefficients (DSCs) and correlation coefficients. RESULTS: DSC of RV segmentation of the RLA method exhibited a higher value than those of the conventional SA methods (0.84 vs. 0.61). Correlation coefficient with respect to manual RV strain measurements in the fully automatic RLA were superior to those in SA measurements (0.5-0.7 vs. 0.1-0.2). DISCUSSION: Our proposed RLA realizes accurate fully automatic extraction of the entire RV region from an available CMR cine image without any additional imaging. Our findings overcome the complexity of image analysis in CMR without the limitations of the RV visualization in echocardiography.


Assuntos
Aprendizado Profundo , Ventrículos do Coração , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...